
Super Fast Silicon Mesa SMD Rectifier

Features

- Controlled avalanche characteristic
- Glass passivated junction
- Low reverse current
- Low forward voltage
- Soft recovery characteristic
- Very fast reverse recovery time
- Good switching behaviour
- Wave and reflow solderable

Applications

Surface mounting
Super fast rectifier
Free wheeling diodes in SMPS and converters
Snubber diodes

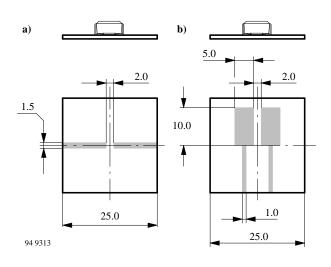
Absolute Maximum Ratings

 $T_i = 25^{\circ}C$

Parameter	Test Conditions	Type	Symbol	Value	Unit
Reverse voltage, repetitive peak re-		BYG22A	$V_R = V_{RRM}$	50	V
verse voltage		BYG22B	$V_R = V_{RRM}$	100	V
		BYG22D		200	V
Peak forward surge current	t _p =10ms		I _{FSM}	35	A
Average forward current			I _{FAV}	2	A
Junction temperature			T_j	150	°C
Storage temperature range			T _{stg}	−55+150	°C
Max. pulse energy in avalanche mode, non repetitive (inductive load switch off)	I _{(BR)R} =1A, T _j =25°C		E _R	20	mWs

Maximum Thermal Resistance

 $T_i = 25^{\circ}C$


Parameter	Test Conditions	Symbol	Value	Unit
Junction case		R _{thJC}	25	K/W
Junction ambient	mounted on epoxy-glass hard issue, Fig. 1a	R _{thJA}	150	K/W
	mounted on epoxy-glass hard issue, Fig. 1b	R _{thJA}	125	K/W
	mounted on Al-oxid-ceramic (Al ₂ O ₃), Fig. 1b	R _{thJA}	100	K/W

Characteristics

 $T_j = 25$ °C

Parameter	Test Conditions	Type	Symbol	Min	Тур	Max	Unit
Forward voltage	$I_F=1A$		V_{F}			1	V
	$I_F=2A$		V_{F}			1.1	V
Reverse current	$V_R = V_{RRM}$		I_R			1	μΑ
	$V_R = V_{RRM}, T_j = 100$ °C		I_R			10	μΑ
Reverse recovery time	I _F =0.5A, I _R =1A, i _R =0.25A		t _{rr}			25	ns
	$1_{R}=0.25A$						

Typical Characteristics $(T_j = 25^{\circ}C \text{ unless otherwise specified})$

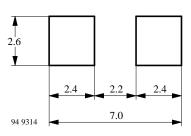


Figure 1 : Boards for R_{thJA} definition (copper overlay $35\mu)$

Figure 2: Recommended foot pads

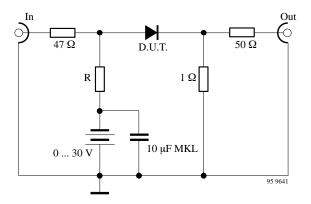
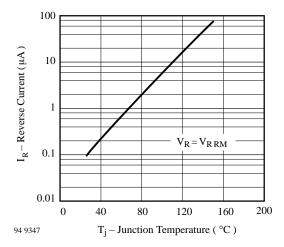



Figure 3 : Turn off switching test circuit

In:	Pulse generator	Out:	Osc.
	$RG = 50 \Omega$		$Ri = 1 M\Omega$
	tr = < 15 ns		Ci = 16 pF
			tr = < 3.5 ns

Circuit 1: $R = 24 \Omega$ Circuit 2: $R = 50 \Omega$

TELEFUNKEN Semiconductors

Figure 4: Reverse Current vs. Junction Temperature

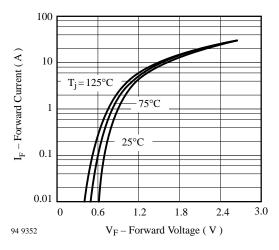


Figure 6: Forward Current vs. Forward Voltage

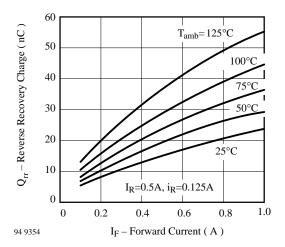


Figure 8: Reverse Recovery Charge vs. Forward Current

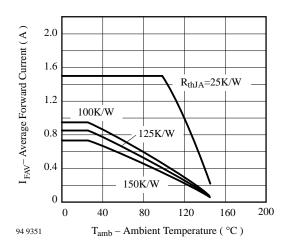


Figure 5: Average Forward Current vs. Ambient Temperature

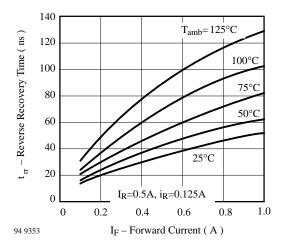


Figure 7: Reverse Recovery Time vs. Forward Current

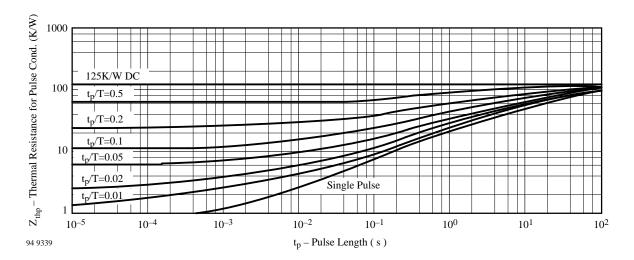
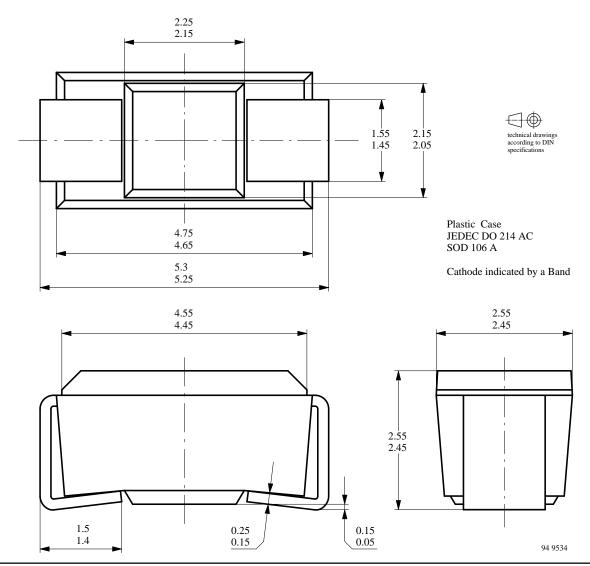



Figure 9: Thermal Response

Dimensions in mm

TELEFUNKEN Semiconductors

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements and
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

Of particular concern is the control or elimination of releases into the atmosphere of those substances which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) will soon severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of any ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA and
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with and do not contain ozone depleting substances.

We reserve the right to make changes to improve technical design without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423

Rev. A1: 12.12.1994 5